Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 63, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429643

RESUMO

Next-generation humanised mouse models and single-cell RNA sequencing (scRNAseq) approaches enable in-depth studies into human immune cell biology. Here we used NSG-SGM3 mice engrafted with human umbilical cord haematopoietic stem cells to investigate how human immune cells respond to and/or are changed by traumatic spinal cord injury (SCI). We hypothesised that the use of such mice could help advance our understanding of spinal cord injury-induced immune depression syndrome (SCI-IDS), and also how human leukocytes change as they migrate from the circulation into the lesion site. Our scRNAseq experiments, supplemented by flow cytometry, demonstrate the existence of up to 11 human immune cell (sub-) types and/or states across the blood and injured spinal cord (7 days post-SCI) of humanised NSG-SGM3 mice. Further comparisons of human immune cell transcriptomes between naïve, sham-operated and SCI mice identified a total of 579 differentially expressed genes, 190 of which were 'SCI-specific' (that is, genes regulated only in response to SCI but not sham surgery). Gene ontology analysis showed a prominent downregulation of immune cell function under SCI conditions, including for T cell receptor signalling and antigen presentation, confirming the presence of SCI-IDS and the transcriptional signature of human leukocytes in association with this phenomenon. We also highlight the activating influence of the local spinal cord lesion microenvironment by comparing the transcriptomes of circulating versus infiltrated human immune cells; those isolated from the lesion site were enriched for genes relating to both immune cell activity and function (e.g., oxidative phosphorylation, T cell proliferation and antigen presentation). We lastly applied an integrated bioinformatics approach to determine where immune responses in humanised NSG-SGM3 mice appear congruent to the native responses of human SCI patients, and where they diverge. Collectively, our study provides a valuable resource and methodological framework for the use of these mice in translational research.


Assuntos
Doenças da Medula Espinal , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Traumatismos da Medula Espinal/metabolismo , Leucócitos/patologia , Expressão Gênica , Análise de Sequência de RNA
2.
J Neurotrauma ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36924276

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a proton-activated channel that is expressed ubiquitously throughout the central nervous system and in various types of immune cells. Its role in spinal cord injury (SCI) is controversial; inhibition of ASIC1a has been reported to improve SCI pathology in vivo, but conversely, gene ablation increased kainite-mediated excitotoxic cell death in vitro. Here, we re-examined the role of ASIC1a in a mouse model of SCI. First, we observed functional outcomes up to 42 days post-operation (DPO) in SCI mice with a selective genetic ablation of ASIC1a. Mice lacking ASIC1a had significantly worsened locomotor ability and increased lesion size compared with mice possessing the ASIC1a gene. Next, we explored pharmacological antagonism of this ion channel by administering the potent ASIC1a inhibitor, Hi1a. Consistent with a role for ASIC1a to attenuate excitotoxicity, accelerated neuronal cell loss was found at the lesion site in SCI mice treated with Hi1a, but there were no differences in locomotor recovery. Moreover, ASIC1a inhibition did not cause significant alterations to neutrophil migration, microglial density, or blood-spinal cord barrier integrity.

3.
Semin Cell Dev Biol ; 61: 60-70, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523920

RESUMO

Inflammation is a natural part of wound healing but it can also cause secondary (bystander) damage and/or negatively interfere with endogenous repair mechanisms if non-resolving. Regulation of inflammation is traditionally looked at from the perspective of danger signals, cytokines and chemokines, and their respective receptors. A neuronal contribution to the regulation of inflammation is, however, increasingly appreciated, and this has important implications for the bodily response under conditions where the nervous system itself may be damaged. In this review article, we provide an up-to-date overview of the current literature on neural innervation of primary and secondary lymphoid organs, focusing in particular on the bone marrow and spleen, its significance in relation to immune function and, lastly, also briefly discussing how a major neurotraumatic event like spinal cord injury (SCI) may impact on this.


Assuntos
Medula Óssea/imunologia , Medula Óssea/inervação , Baço/imunologia , Baço/inervação , Animais , Humanos , Modelos Biológicos , Sistema Nervoso/imunologia , Sistema Nervoso/patologia
4.
Langmuir ; 26(22): 17756-63, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20883048

RESUMO

We report a facile means to achieve planarization of nonflat or patterned surfaces by utilizing the layer-by-layer (LbL) assembly of highly diffusive polyelectrolytes. The polyelectrolyte pair of linear polyethylenimine (LPEI) and poly(acrylic acid) (PAA) is known to maintain intrinsic diffusive mobility atop or even inside ionically complexed films prepared by LbL deposition. Under highly hydrated and swollen conditions during the sequential film buildup process, the LbL-assembled film of LPEI/PAA undergoes a topological self-deformation for minimizing surface area to satisfy the minimum-energy state of the surface, which eventually induces surface planarization along with spontaneous filling of surface textures or nonflat structures. This result is clearly different from other cases of applying nondiffusive polyelectrolytes onto patterned surfaces or confined structures, wherein surface roughening or incomplete filling is developed with the LbL assembly. Therefore, the approach proposed in this study can readily allow for surface planarization with the deposition of a relatively thin layer of polyelectrolyte multilayers. In addition, this strategy of planarization was extended to the surface modification of an indium tin oxide (ITO) substrate, where surface smoothing and enhanced optical transmittance were obtained without sacrificing the electronic conductivity. Furthermore, we investigated the potential applicability of surface-treated ITO substrates as photoelectrodes of dye-sensitized solar cells prepared at room temperature. As a result, an enhanced photoconversion efficiency and improved device characteristics were obtained because of the synergistic role of polyelectrolyte deposition in improving the optical properties and acting as a blocking layer to prevent electron recombination with the electrolytes.


Assuntos
Eletrólitos/química , Nanotecnologia/métodos , Polímeros/química , Difusão , Microscopia Eletrônica de Varredura , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...